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ABSTBRACT

An algorithm based on simple Leuristics is presented for
an importart class of all-binary integer linear programs
known as the set covering problen. In spite of 1its very
special form, the set covering problem has many practical
applications. Optimal solutions to problems derived fron
these arpplications are difficult to obtain using known
methods., Various soliution techniyues are investigated lased
on heuristic algorithnrs that cbtain upper and lower bounds
or the ofrtiral solution value together with branch and tound
enumeration. These solution technijues are effective on
some [problems. Ccoputational results are reported for
several large-scale real-world problenms and several

artificial problems.
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A. INTECDUCTION

Set Covering Proklems (SCPs) comprise an important class

of all-birary (0-1) Integer Limear Proygraas (ILPs). The 5C?
model is well-known and has many practical applicatiors irn ]
\ diverse areas such as vehicle routing, facility locatiorn and ._
' capital Ludgeting. The set covering problem is a theoreti- -
f cally difficult groblem in that it is NP-complete [Ref. 1]. 1
However, there exist several methods for obtaining solutiomns

to SCPBs for quite large real-world problems. In this study,

Leuristics together with branch and bound enumeraticn are
tested as a solution method for solving several large-scale
SCPs.

There are several reasons for using heuristics with
rranch and bound instead of using cutting plane rmethods,
LP-ktased rranch and tcund, or scme other technique. First,
not all researchers have access to jood large-scale 1D
systems on which to tase cutting plane or brarch ard tound
algorithnms. Any ccopetent researcher should be akle to
program a heuristic-kased method with a modest amcunt of
effort. The second reason for wanting heuristic-lased

methods is that more complicated technigues are sukject to

failure as a result of degeneracy, numerical instability and
slowress. For instance, the systems based on solving the LP ' !
relaxation, both cutting plane and tranch ani bound, fail
wken the LPs are difficult to solve because of their size,
or because cf basis structures which are hard to invert, or ,f-%
because the LP gives weak bounds. See [Ref. 2] and [Ref. 3]. L
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THE SET COVERING FROBLEM

The SCP is an integer program of the form:

n
(1 MIN c.x.
E; J 3
n
2 S.T. a_ x_ 2hb i=1,...,0
(2) ; l]j i AR
j=1
(3) xj binary j=1,...,1n
where each a, L = 0 or 1

bj > 2 and integer

A mirimal cost set <¢f colurrs must be selected froe the
coefficient matrix A such that the right-hand side b 1is
covered or satisfied. Typically, right-hand-side values are
all 1s. Closely related to the SCP is the set partitioning
probiem{ SEP ) where (2) is replaced by (4).

n
4) a x = b i=1,...,0.
( .Z iJ j il ’ ’
J=1
The SP" is the same as the SCP except that each row i must

be covereld exactly b, times instead of at least k times.
i i

C. USES OF SCP AND SEP

Set covering protlems and set partitioning problems have
been studied widely because of their many practical applica-
tions and simple binary structure. Bausch [ Ref. 2] ani
Balas and Padberg [Ref. 4] give a large collection of
references to applications which are given below for
completenress along with some more recent references. only
references 6,7,9,16 and 25 are unsighted.
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1. Airlire Crew Scheduling [Ref. 5],[Ref. 6], Fef. 7
[Ref. 3], Fef. 9],[%ef. 10) o
2. Airline Fleet Schedulirg [Eef. 11) ’
s 3. Truck Deliveries {Ref. 12],[kef. 13] -
E [Fef. 147],[ Ref. 15]
3 {Ref. 16) :
. 4. Fclitical Districting [Eef. 17 ],[Ref. 18]
{ 5. Infcrmation Retrieval [Ref. 19]
f 6. Symbtolic Logic fRef. 20]
j 7. Switching Theory [Ref. 21],[ Ref. 227
k [Ref. 23],[ Ref. 2] 3
[ 8. Stock Cutting [Ref. 25]
! 9. line Balancing {Ref. 26]
10. Capacity Balancing [Ref. 27]
11. EPRT-C:ZH [Ref. 20] y
12. list Selection (Bef. 28] RO
13. Tanker Routing { kef. 29] :iﬁf
14. Frequency Allocation [Eef. 30] ﬁﬂﬁi
15. Tracking Problenms [Eef. 31] E'*"
16. Vehicle Routing [Fef. 32] R
17. Sales Territory PCesign (Ref. 33]
18. Colcring Problenm {Ref. 34] R
19. Cyclic Scheduling Problem [Ref. 35],{ Ref. 36) P
20. Disconnecting Paths [Ref. 37],[ Ref. 138]
ir a Graph
21. Capital Investment fRef. 39]
22. locatiorn of Offshore [Ref. 40]
Drilling Platforms ,
23. TFacilities Location [Ref. 41] 7
A truck routing jfrotlem will be described here for the o
purpcse of illustrating both the SCP and the SEP. The SCE l:

example is described first. The headguarters of the First
Corps of the Republic of Korea Army has 8 divisiors to

supply using 7 possille Jdelivery routes. It is assumed that

1
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the cost of each route is measured in dollars here, Fut
costs could also be measured in time, miles travellei,
trucks used, etc. The incidence matrix A which is shown in
Table 1 consists of 1s and Os such that
a _ {1 if route j goes through division i
*J 0 othervise.

TABLE 1
Truck Routing Example

o
[o]
- e
0]
—
(¥
1w
&
iwn
Ion
I~

%2

*u
#5
36
&7
BE
Costs

N O O O QO e e I

0O O O w O a2 -0 Ol
@ e w2 OO O =
- e e OO O a - |
OV QO b b o O O © O |0
N O O O e = O O O Iw
Ur e O O O O O O O |

(=]
[ V]

A set of truck routes of minimal cost is to be determinel in

such a way that at least one truck roate should ¢n tlLrough )

each suprly point. ? 7

This groktlem is an SCE ;__

where A = { a ,  } fﬂ;
ij ‘

T =T

B=(11111111) and s
c=(781012655). '

Variatkle xj kas the value 1 if truck route j is in the

12
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minimum cost set of routes and it has value 9 otherwise.

i The ortimal solution is
x=(1,0,1,0,0,9 0),

.

E with objective value 17. The solution of the above problen ;57“

i using brarnch arnd bound will be demonstrated ir Chapter 2. S
Suppose, on the cther harnd, that trucks are pickirng up ’

supplies and that the net cost of route j is given bv

{ c_ = cost of route j - value cf suppiies at all points in
: J

route j. With this cost structure, no overcovering of anv -

row may be allowed and this problem becomes an SFEP. The

oprtimal solution for the SPP is

T
_X=(1’ololol1vol1)l

-y

with objective value 18. Since this SPP is a restricticn cf
the previous SCP, it 1is to be expected that the optimal
soluticn to the SPP will e ro better than the optimal solu- R
tion to the SCP. NN

D. SCLUTION METHODS FOR THE SCP

1. Cutting Planes

Cne method of solving a general ILP is by attempting F

to define the optimal integer solution of the ILP as an iﬂ;?

extreme fpoint of a convex polyhedron generated by the orig- o
inal linear constraints plus some additional constraints

called "cuts." The technique is applied to the SCP by first !»_.

solving the linear relaxationt o

MIN  cx

(5) S.T. Ax 2 b e

x 2 0. Lt

Solve tais rel;;ation. If the solution is integer, then the gi?f

solution must be optimal. Otherwise, derive a valid cut, '?ff

13




i,e., a linear constraint which is satisfied by all integer

solutions to SCP, but which is violated ty the current non- -
irteger solution. Add this contraint to the prcblem and
solve +the new restricted problen. Continue solving the

restricted linear prcgrams and adding cuts until either an
integer solution is okttained or numerical difficulties force -

a halt tc the process.

2. Eranch and Bound

Branch and tcund is an optimization techknicue that o

uses a tree search enumerationL approach to the solution of a
general ILP:

MIN ¢

(6) S.7. A

X

Following Garfinkel [Ref. 41], denote the set of feasible
solutions to (6) by

S={x1iAax 2b, x 20, x integer } .
Instead of attempting to solve directly over S, the set is
successively divided into smaller sets which have the prop-
erty that any optimal solution must pe in at least cne of
the sets. This is called separation and is often illus- .
trated by an enumeration tree with 1its root node at the tog
of the tree and with restrictedi subproblems Lelow the root

(See Figure 2.1). Each node of the enumeraticn tree
corresponds to a subproblem of (6). That is, node k is the
problem

(7) MIN cx , X is in Sk

where sk is a subset of S.

Ir a binary ILP, Sk is S with additional constraints which

14 ;{f
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fix certain variables to 0 or 1. As the enumeration
proceeds further dowrn the ernumeration tree, the sutsets
become rrogressively smaller until it finaliy becomes
possitle to solve (7) exactly or at least to determine
whether cr not it contains a potentially optimal solution.
Subproklems are discarded or "fathomed"™ when (7) 1is solved
or when it is determined that a subset «carnot cortain a
solution better than the best known solution to (6). Upger
and lower tounds on the optimal solution are calculated for
each sulproblem allcwing for more efficient fathcming of
nodes. The success or failure of brarch and btound 1is
largely dependernt on the accuracy of these bounds.

Branch and bcund algorithms are often primal in the
sense that they proceed frcm one feasible solutior to
another until optimality is verified. 1In fact they may find
optimal or near optimal solutions at an early stage in the
enumeration process and spend the majority of the time veri-
fying optimality by improving bounds.

E. IPBPLEMENTATICN

Most large-scale mathematical programaing frotlenms

have special structure which is exploited in the implementa-

tion of mathematical programming solvers. Txamples of such

special structure are sparsity of the constraint matrix andi
the freguent occurrence of some coefficient values. To take
advantage of this structure, the computer programs written
for this study are written as subroatines embeddel in a
iarge-scale optimizatior test bed called the % System or
simply XS [Ref. 42]. XS is designed to solve linear
programming problems, 0-1 progranming problems, ronlinear
frograzaing problenms and mixed 0-1/linear/rnonlinear
programming problems. X5 wuses sparse matrix techniques

15
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common to many mathematical programming systems. A ©cre
specialized system using binary vectors to represent the 3
matrix [Ref. 43] might be faster for some problems fkut less
flexitkle.

2. Input Data Format

In this study, to make data manipulation easy and
convenient, the data format described by Bausch [Ref. 2] is
used since this format has many aivantages for large-scale
Froblems. The advantages are as follows.

a. It is compact.
b. Storage requirements are easily calculated.
Cc. Data generaticn problems are simplified.
d. Cclumn manipulation of data input is made easy
since all information for each coluan is contiguous.
;i; e. This column format 1is easily gererated Ly ccmmer-
cially availatle (MPS) problem Jeneration systeans.
The data input fcrmat consists of three sets of card images:
a. Prollem dimeasions. Format (3I6) (One Card)

b = Number of rows
N = Numbér of columns
NZEL = Number of non-zero elements.
L. Constraint ranges. Format (244, 2EZ16.8) (M Cards)
IR = Row index i

PL = Lower range limit b,
i

RU = Upper range limit (always O0).
Cc. Column Data. (N or Mcre Cards) (2A4, F14.3, 10I5)

JC = Column index j
C = Column cost coefficient c
J
NCE = Nurker of non-zero elements in the coluamn

IR row addresses of non-zero coefficients.
é; If NCE is greater than 9, additional column cards

;i are needed to hold the row addresses for that

......................................

..................
...............................

s
0
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]
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column. The format for additional colurn cards is
(20%, 10I15).
An example of this data format is shown in Appendix A for
the truck routing exarrle of Table 1.

3. JIest Prollenms

Eight test [froblems are evaluated in this thesis.
These Froblems consist of four real-world protlenms
(American, BRus, Tiger and Truck), and four artificial rprob-
liems (Steiner?!, Steiner2, Steinrla and Steinr2a). Steirer?
and Steiner?2 are prokblems devised in [Ref. 49] ana are gquar-
anteed to require extensive enumeration when using LP-tased
rranch and bound since the LP bounds are so weak. Steinrla
and Steinr2a are Steiner1 ard Steiner2 transposed, respec-
tively.

Some of the problems are, in fact, pure SPPs.
However, we have converted these problems irnto SCPs
reasoning that the derived SCP should still Le representa-
tive of a true SCP. The characteristics of these proltlems
are shown in Table 2 where NZEL is the total number of
nonzeros in the constraint matrix and NCE is the average
number <¢f ronzeros in each colunn. All these ©grotlems
except Truck are tyrical set covering problems which have

right-hand sides equal to 1. The Truck problem has a
general right-hand side. All of these test probtlems were X
run on an IBM3033 under V4/CHS. Computatior times reported l};f
ir the following chafrters are accurate to the number of R
decimal rlaces shown. B
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TABLE 2
Problem Dimensions
2roblenm Rous Columns JZEL NCE
American 95 9318 57293 6.0
Bus 56 530 3339 6.3
Steiner? 117 27 352 132.0
Steiner1a 27 117 351 13.0
Steiner? 330 45 991 22.0
Steiner2a 45 330 991 22.0
Tiger 160 636 4134 6.7
Truck 239 4752 30075 8.0
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A. INIRCDUCTION

In this chapter we introduce "branch and bound" enurera-
tion which will be used in chapter 5 to solve SCPs. Branch
ard Dbound is an ortimization technigyue that uses tree
enumeration together with upper bounds and lower tcunds on
the objective functicn. These bounds help to accelerate the
fathoming process and reduce enumeration. In this chapter,
we descrite branch and bound in terms of a minimizing binary
I1p, and Jdiscuss the importance of good bounds and good
tranching strategies. In a bipnary ILP, a separaticn is
effected ty fixing a binary variaktle to its possible values,
0 and 1. Thus, every separation of a problem is, in fact, a
partition of the protlem into two subproblems.

The discussiorn of branch and bound is 1limited to a
"depth-first" search or exploration of the enumeration tree
since this 1is the method that was used in tkis research.
More general technigues are possible ( See Garfinkel anAi
Nemhauser [Ref. 43]. )} but these all require substantially
more storage and general overhead. Most commercial Ekranch
and bound packages utilize a depth-Zirst search.
Lepth-first search simply means that when a separation is
defired, one of the nodes created by the separation is imre-
diately selected to ke the next subproblem, and whern 4 node
is fathomed, the enumeration always backtracks to the nost
recentls created 1live node which is the "twin® of a node
already explored.

There are +two important parts of any branch and tound
algorithuo. First, good upper and lower bounds must be
obtained on the optimal solution. The closer the bounds are
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to the optimal solution, the £fewer nodes (subproblems) must
be enumerated. There exist several ways of obtaining upfger
and lower bounds on an SCP. Methods for obtaining computa-
tionally simple lower bournds will be described in Chapter 4.
Upper bounds on the ortimal solutior are given Lty heuristi-
- caliy oktaired feasille solutions to the ILP. Yeuristic
solution methods for the SCP will be described in detail in
the next chapter.

The second important part of the branch and tound algo-
rithm is the method of determining wkich variable tc £fix
;a first when a separaticn is defined at a pode in the tree ani
whether that variable skould be fixed to O or 1. TLkis
selection process is called a "branching stratejy."
Branching strategies are derendent on the methods keing used
" for obtaining upper and lower bounds and the actual strat-
' egies to be used will be discussed in chapter 5. It seems

obvious that if a good guess can be made as to which vari-
ables must ke in the optimal solution, then £fixing one of
il those variables first to 1 would be a good tranching

strategy. Of course, guessing is very difficult; otherwise
we would have guessed the sclution to the whole protlen.
Arother likely strategy may be to select the least attrac-

L. e e
I PRI
e B .
ST Tty
et
ALd a4 4

il tive variatle in the incumbent and set that variaktle to 0. .

Unfortunately, as will be seen in chapter 5, no single rule

a2 o

seems to work well on all problems and a certair amournt o3

case-ly-case experimentation is necessary.

-9
. B. FATHOMING CRITERICN .
; o
< To accelerate the enumeration process and save computing -
S time we need a criterion to decide whether or nct a

subproblem should be discarded at a certair point of the B
algoriihr. Suppose that several steps of the enumeration :

ot L.
Lt .
PO G W )

have already been fperformed and that a subproblem at a
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particular node in tlre tree is being considered. Let BEST

denote the smallest feasible objective value found thus far
l in the enumeration. Clearly, BEST is an upper bound on the

optimal solution to the ILP. The feasiblie solution
N ) correspondirg to BEST is called the "incumbent."
- Now, let CLBND derote a lower bound on the optimal solu-
l tion to the ILP given the restrictions at the current node.
' CLBND is defined to be infinity if no feasible soluticn to
the I1P can be found given the current restrictions. let
CUBND denote a upper bound on the optimal objective value

LY

correspondirg to a feasible solution to the ILP ygivern the
current restrictions. If BEST > CUBND, let BEST = CUBND and
let the corresponding solution be the new irncumbent. Now,
the efficierncy of rranch and bound enumeration 1is tased on
I' the fact that explicit enumeration need not be extended
Lelow the current node if the "fathoming criterion" is met:

Fathoming critericn: CLBND 2 BEST.

i ) For prcblems with integer costs, fractional values for CLBND
should te rounded up to the nearest integer.

From a computaticnal viewpoint, it is useful to split

the above test into two tests, however. First, c¢»ompute

i CLBND and test if CLBND > REST; if it is, the node is

fathomed. If not, cnly then compute CU3ND, update BEST if

appropriate and repeat the test. This avoids soae

unnecessary coaputaticn of upper bounds.

C. SEPABRATION AND BRANCHING

"Branching" descrites the process whereby an unexplored

. subrroblem is selected for exploration, i.e., uprer and

! lower Ltounds are ccoputed for the node anl the node is
: either fathomed or separated. "Separation" is the prccess
;j wherety the current suktproblem is separated into two or more
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subsutproblens, at least one of which must contain the
optimal solution to the current subproblem if such a solu-
. tion exists.
In a binary LP using depth-first search, Ltranching ard
separaticn are intertwined. A separation 1is always a
partition based on fixing a specific variable to 0 or to 1.
IE After a separation cne of the live nodes Jjust created nust
be igmmediately selected for branching. °~ If a node is
fathoned, the most recently created 1live node must be

selected for exploration.

D. ALGORITHN AND EXAEPLE

1. Algoritkhm

) The following branch and bound algorithm uses depth-
first exploration of the enumeration tree. The 1logic is

exactly that used in the programs written for this thesis.

Algorithm: Depth-First Branch and Bound
STEP 0. (Initialization)
let BEST =00, STACK = 0.
STEP 1. Compute CUBND given restrictions defirned Ly

STACK.
‘I Tf£ CLBND 2 BEST, go to step 5.
) STEP 2. Compute CUBND given restrictions defined ty
o STACK.
e If CUBND < BEST, then let BEST = CUBND and save
’ incumbent.
If CLBND 2 BEST, go to step 5.
STEP 3. (Branching) Select an unfixed variable j to £fix
_ and detersine whether to fix it to 0 or 1.
4 STEP 4. Put vertex j in STACK with information indica-
o ting whether it is fixed to 0 or 1 and that
if its twin has not yet Leen explored.
:i; Go to step 1.
J




STEP 5. (Backtrack)
If STACK = 9, then go to step 7.

STEP h. Remove j from top of STACK.
If its twin has been explored, go to step 5.
Otherwvise, put j back on 3TACK fixing j to the
complemert of its previous value and noting that
its twin kas already been explored.
Go to step 1.

STEP 7. Terminaticn
If BEST =00, there exists no feasible sclution.
Otherwise, current incumbent is optimal.

End of Algorithm: Bramch and Bound

2. Example

The example telow illustrates the above algorithm on
the SCP defined in Taltle 1. Lower bounds on the solutions
at each node are obtained by £inding a feasible soluticn to
the dual of the LP relaxation of the SCP (See section P in
Chapter 4.). The ﬁpper bounds are obtained by usirng an
"addition heuristic" which successively adds coluans to a
partial cover until a complete cover is obtained (See
secticn C in Chapter 3.). Separation is effected by

randomly selecting a variable x_ amonj all variables not

in the current soluticn obtained by the addition heuristic.
The Lranch corresponding to x = 1 is explored first.
]
Tthe enumeration tree is shown in Figure 2. 1.
a. Initialize: BEST =0
E. Node 0: CLBND 17.0
CLBND BEST so continue.
CUBND 18.0, 10 = (1,9,0,0,1,0,1)

A

CUBND < BEST so let BEST = CUBFD and 50

becomes the incumbent.

23

Sma oo




C1LBND < BEST so variable x2 is selected

for branckhing. Fix variable X, to 1 first.

£

Cc. Node 1: Given that x2 = 1, CLBND = 25.0.

Since (CLBND 2 BEST, backtrack to the twirn
of this node which has not been exfplored.
d. Ncde 2: Given that xz = 90, CLBED = 17.90.

CLBND < BEST so continue.
CUBND = 18.0. No improvement over incumlent.
Since CLBND < BEST, select xS fer branching.

Set x_ = 1.
5

€. Ncde 3: Given that x2= 0 arnd x5= 1, CLBND = 18.0.

Since CLBND 2> BFST, backtrack to the twin
of this node which has not been explored.
f. Node 4: Given that xz= J and xS = 0, CLBND = 17.9.

Since CLBND < BEST, continue.
CUBND = 17.0 for Eu = (1,0,1,2,0,0,0).

Since CUBND < PEST, let BEST = CIUBND ani
let Xu be the new incuambernt.

Since CLBND 2 BZS7, backtrack.
No live nodes exist, so the current incamhent

Eu is optimal with objective value 17.0.
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Pigure 2.1 Enumeration Tree for Truck Routing Example.
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ITI. HEURISTIC SOLUTION TECHNIQUES

A. INTRCDUCTION

Two tasic heuristic technigues exist for obtaining good
feasiltle solutions to SCPs: "addition®" theuristics and
"deletion" heuristics. These two heuristics are used in
this study for the purpose of generating solution sets and
upper lounds. These heuristics are not guaranteed to solve
the SCP optimally but can be used to get good upper bcunds
or. the optimal solutions which are essential in the Etranch
and btound enumeration. Feasible solutions to the SCP are
easily ottained becauvse of the SCP's greater than or equal
to constraints and nonnegative constraint natrix.

Computational results are given ir section D.

B. ALDITION HEURISTIC

An addition heuristic begins with the infeasible solu-

tion x=0 and successively sets to 1 that variable x _ which
- J

myopically minimizes effective cost. The effective cost

assocjated with x is ¢ /p , where p 1is a penalty whick ir
J J 3] J

some way reflects the amounts of infeasibility currently

teing contributed by x = 0. The addition heuristic can be
J

stopped when a feasible solution is obtained but it is
possible that the cover produced is not minimal! ard a seccni
phase should be added which deletes any columns in the cover
whick are redundant.

R
PR W DALY




Algorithm: Addition Heuristic
Input: The SCP matrix and vectors A, c and b. iﬁ,;
Cutput: Upper bourd to SCP solution. - ) R
STEP 0. "Initialization® :
I=1{,2,e00,m}, 3= {1,2,...,0},
J' =9, L' =), CUBND = O.
For each column j€J

Compute a pernalty p > 0. T
J Sl
let h = number of nonzeros in column j.
3

t; STEP 1. If b* < 0 or J is empty, go to step 3. .
Otherwise, let o
c

. . J
= arqmin - N
) 585" . ey

ARICARS #

CUBND = CUBND + c_ .

.: J 0 s
o STEP 2. For each i such that a = 1
e i
= Io T
g Let k' = b'-1. —
1 l - .--—A
If b' = 0 (update column sunms) T
i
Fcr each j such that a, = a, = 1,
1] lJo
Let h = h -1,
J J T
o Ifh, =0, let 3 =J - j. KA
L J _':
- If b' € 0, go to STEZP 3. BN
Othervise, T
‘ For each column je€J
> Update penalties p_ if necessary.
e J o
Go to ster 1. T

.....




STEP 3. "Generating minimal cover"
For each each jé€ J!
If cclumn j is redurdant

let CUBND = CUBND - c ..
3

let J' = J' - j.
STEP 4. "“Termination"
Halt. If J' is a cover, CUBND is an upper ltourd
on the SCE.
Otherwise, no feasible solution exists.
End of Addition Heuristic

Two different penalty functions have been tested with

tlie atove addition heuristic: p = h and p, = k,£ where k
] ] J ] J

is the initial column sum (number of nonzeros in the column!

which is never updated. FKovac [Ref. 84 ] suggests using k.
3

as part of a heuristic for obtaining both upper and lower
bounds on the optimal solution to an SCP. The results
obtainel using this penalty are not reported Lere, hovever,
since they are so foor. It should be noted that rore
complicated penalty functions could certainly be defined
suck as Pj = log(hj). In additiorn, instead of selecting the

piniwmum ¢ /p, the minimubd of a more general functional form

g(c . ,g.) could be selected.
J 3

C. DELETICN HEURISTIC

A deietion heuristic begins with the feasible solution

x=1 anl successively sets to 0 that variable x_  which
- ]

myopically minimizes effective grofit ¢ /p . Here pr is some
3 3

&

.
e
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penalty reflecting the amount of overcovering which column j
is contributing. The deletion heuristic stops when no
alditional variables can be set to 0 without «creating an
infeasiblility implying that the cover obtained is miniral.
The fcllowing algorithm carries out the above ideas.

Algorithm: Deletion Heuristic S

i Input: The SCP matrix and vectors A, c and b.
Cutput: Upper bound to SCP.
STE? 0. "Initialization"

k I=1{1,2,e00,m}, 3= {1,2,...,0}, -
p
s
[
1

J' = ¢, t'=>b, CUBND = Y

For each ie€I, >

let b = number of nonzeros in row i.
i

Q For each jeJ,h

let h = number of nonzeros in column j.

J ——

compute a penalty p > 0. Tl
J .

STEP 1. If b' < 0 or- J is empty, jo to STEP 4. 'Ei;
C. .-:::-:':

j. = argmax 2 -

0 JjéJ pP. =

j .

STEP 2. For each i such that a, . = 1, -jf
o oy

If b' = h_, go to STEP 4. '

1 1 - -

STER 3. J = J - T

CUBND = CUBND - ¢ o

For each row j such that a = 1.

let L, = h, - 1.
i i

Go to STEE 1.

29
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L STE? 4. For each a, = 1 1let J' =J' + j
S iq
0 -

For each a, = 1 let b' = b' - 1
ij i i

0, update column sum h_ letting
J

j for any h = 0. .
J

e If b

_ i
i J=4d

If b*' <0, go to STEP 6.
STEP 5. For each column jé€J.
Update penalties p_ if necessary.

m Go to STEF 1. .

STEP 6. "Termination"

;. Halt. If J' is cover, CUBND is an upper bcund

L on the SCE. -
* Otherwise, no feasible solution exists.

End of Algorithm Deletion Heuristic

The deletion heuristic has only been tested using p =h .

J . —

The comments on the fossible use of more gyeneral functional -

forms in the addition heuristic are also valid here, bPut
have not Leen tested.

D. COBPUTATIONAL RESULTS =

An addition heuristic and a deletion heuristic have heen
coded for purposes cf comparisor. The results are sumna-
rized in Table 3. As can be seen, the addition heuristic is
faster than deletion heuristic, but the upper bound from the
addition heuristic is not as good as that oktained by the
deletion heuristic except for problems SteinertA and Truck.
Although these results tend to indicate that the deletion
heuristic is better, the true test of usefulness ir solving
SCPs will have to wait until <chapter 5 where the heuristics e
are embedded in a branch and bound algorithm.
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TABLE 3
Computational Results of Upper Bounds

Prcbien Addition Deletion

Value Iipme Value Time
American 3.832 9.35 3.3€4 35.13
Bus 5.253 .03 5.192 0.64
Steiner1 19.0 0.00 19.0 0.00
Steinr1la 9.0 0.00 10.0 0.00
Steiner2 32.0 0.00 30.0 2.01
Steirnr2a 16.0 0.00 16.0 0.24
Tiger 59.264 0.11 59.173 0.92
Truck 367.€4 1.19 389.62 53.35

The above heuristic techniques are one-pass methods and
are the cnly methods implemented in this research.
Multiple-pass methods exist and are mentioned here for
conpleteness. The most straightforward multiple-pass method
is called the "1-opt" method [Ref. 51]. This metkod first
uses an addition or deletion Leuristic to obtain a minimal
cover. Then, each column in the current solution is checkel
agairst the columns not in the solutiorn to determine if a
one-for-one exchange can be made which maintairns a feasitle
cover while reducing total cost. The 1-opt method 1is an
example of an "exchange heuristic." The basic 1idea can ke
extended to a k-way exchange resulting in the ‘"k-opt"

method.
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IV. LOWER BOUNDS ON THE SCP

A. INTRCDUCTION

Several methods cf finding lower bounds for solutions to
the SCP are described in this chapter. Getting gocd lower
bounds on the ortimal solution to an SCP is critical 1if
optimal solutions are to be oktained using Ekranch and Lbound.
Lower bounds are also necessary if the accuracy of nonop-
timal sclutions is tc te bounded when branch and bound fails
to £find the optimal solution. There are many possitle
methods of obktaining lower bounds on the SCP, all ktased on
solvirg some relaxation of the the associated ILP. Several
methods have been coded and are compared to decide which
method should be enmployed witkin the branch ard kFound
ernumeration. Although these bounds have not been used for
solving any SPPs, it should be noted that they are all valid
for the SPP since the SCP is a relaxation of the SPP.

A feasible solution to the dual of the LP relaxaticn of
the SCP rrovides one easily obtainable lower bound. Also, a
column grpartitioning method 1is given in which the SCF is
partitiored into small SCPs which car be solved exactly and
whose sclution values may be summed to give a lower bound.
AnothLer lower bound which is tested is the sum of all of the
sinimal row covering fractions. All these methods are coded
and computational results compared ir section E.

B. DUAL 1P RELAXATICN LOWER BOUND

One cbvious relaxation of the SCP which can be solved to
obtain a lower bound is the 1linear programming (LP)
relaxatiorn. This technique has been used successfully in
many cases [Ref. 45)]. But a problem with the LP lower tound

32
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is that it may be difficult to solve the LPs associated with

many SCPs. {See for example Bausch [Ref. 2] and Salkin ani

Koncal [Ref. 3]. ) This is true because the LP may bte guite by
large, highly degenerate and have a basis structure which is iifi
numer ically unstable. However, it is possible to get a {

quick lower bound on the SCP by just finding a feasitle

soluticn to the dual of the LP relaxation of the SCP since, f

4
Ww(lP ) < Ww¥(LP ) = v*(LP ) < v*(SC2)
D D P
where w(LPD) = objective value for a feasible solution J
tc the dual of the LP relaxation, '
w*(LPD) = optimal value of the dual LP relaxaticn,

{ v* (LP ) = optimal value of primal LP relaxaticr, . ;
. P .
d and L

! v* (SCP) = crtimal value of the SCP. -53}3

Letting 1 denote a rcw vector of ones, the dual tc the LP f-1}

relaxation of the SCF i o
e i SCEFE 1is

max b'u - 1y "]

T : e

S.t. A a1 - Z! < E . ::'-'

u20, v20. ]

O, v 0 X

The dual LP looks very similar to the SCP itself if the dual . )
variatles v are set to zero, and a simple method for '
ohtaining a feasible solution can be devised in a way that

is sirilar to the greedy addition heuristic for the 5CP.

Algorithm: Dual LP Relaxation lower Bound (DLPRLB) -

POV

Input: SCP coefficient matrix and vectors A, ¢ and k.
Cutput: Lower bournd CLBND to the SCP
STEP 0. "Initialization"
CLBND = 0 '. ) ‘
I = {1,2,0ee,m}, J = {1,2,4..,0} e

For each 1i€I, let h
i

1]

nunber of nonzeros
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in row i.

STEP 1. If I is empty, go to STEP 5.
b,
. i
i = argmax -
0 1€l h,
i
I=1I-1
0
STIE? 2. ¢, = rin c
3 jia, =1 ]
0 i
0
J=J -3
o
STEP 3. CLBND = CIBND + c_ b,
j i
0
STEP 4. For each row i such that a |
i
JO
For each column j such that
Opdate cost coefficients
c.=c¢c_ - cC,
J J JO

Fepeat STEP 1.
STEP 5. "Termination®
Halt. CIBEND is a lower bound
End of Algorithm DLPEKIB

At each iteration of the algorithm,

would be set to ¢ . The actual
J
0
variables need not be retained, however,
the dual objective function is just bla.
Hey [Ref. 45] gives a somewhat more
for f£ipding a feasiktle soluticn to the 4
the SCP and this is tested along with th

above.

34

Else, let

=1'
a, =1,
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dual variable u
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values of the dual
since the value of
complicated metlol
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C. PARTITIOBING LOWEE BOUND

Marsten [Ref. 50] gives a method for finding a lower
bound on the SCP by solving subproblems of the SCP defined
on certain partitions of the coefficient matrix. It is
easier tc describe the method, however, in terms of a maxim-
izaticn prollen.

Prown, McBride and Wood [Ref. 46] give a way to calcu-
late an upper bound using a partition of the columrs for a
problem cf the form:

MAX cx
£.T. Ax £ D
X binary.

They use the bound fcr estimating the size of the maximunm
embedded generalized network 1in an LP constraint matrix
wvhere ¢ = 1, b = 2, and A is the traaspose of the 0-1 inci-
dence matrix associated with an LP constraint matrix. Their
bound is found as follows.

let A1 and A2 be a partition of the columns of A and 1let z,
z1 and 22 be the sclution of the maximization proktlem on
A, A and A_ respectively. Then, z £ z_ + z _.

1 2 1 2
i If A1 is intelligently chosen, 21 can be computed exactly.

Then, A Lkecomes A2 and the partitioning scheme 1is recur-
sively repeated untii 22 can be easily solved also.

d The SCP can be ccnverted to a maximization proktler by

substituting variables 1-7 for x and multiplyiny the olkjec- ,;jﬂ
tive function by -1. Thus, ;t is not hard to see that a A;
lower Pound on the SCP can be oktained using the above ?1
) method. Of course, the method can be applied directly L
without making the substitution. The partition of the :Ei
columns ‘;f}
A1 is created with respect to an arbitrary row i. The g%

1
e
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columns of A1 are those «columrns of row i ccntainirng

nonzeros. The minimum cost anong those cost coefficients
contritutes an additive term to the lower bound. The vari-
ables included in the partiticp are never cornsidered agairn
and all rows with norzero intersections in the partition are

also never considered again.

Algorithm: Partitioning Lower Bound
Input: SCP coefficient matrix and vectors A, c and E.
Cutput: Lovwer bound CLBNL to the SCP
STE? 0. "Initialization"®
1= {,2,.e.,m}, J={1,2,...,n}
For each ie€I,

let k' = number cf nonzeros in row i
i

STEP 1. If I is empty, go to step 4.

let i = argmin h
0 ieT i

I1=1I-13i
2
STFP 2. (*ind the b, minigum c in row io.)
i
9 J
let 3 = argmin_c .
0 j:al =1 3
i
OJ
Let CLBND = CLBND + c .
J
0

Let ¢ =00
Let b =%t - 1.
If b >0, go to step 2.

STEP 3. For each j' such that a, = 1,

i
0J

For each i such that a =1
ij!

36

P
D W'

Ve
vl

. -
e .
'
S

A o 4

s
1




~

If b, =0, let I = I - i.
1

50 to stez 1.
STEP 4. "Termination”
Halt. CIEND is a lower bound to the SCP.
End of Algorithm Partitioning lLower Bound

D. KQVAC'S LOWER BOUKD

Consider the basic model of the SCP with all right-hand-

side values equal to 1.

n
(8) MIN Y

c. x.
j=1 J 3
n
S.T;Eaaij sz 1 i=1,...,n
xj binary j=1,...,0.

The following lemma [Ref. 44 ] provides a lower bcund for
the akove sSCP.

*
Lemma Denote the optimum of problem (8) by 2
then

m

*

(9) z 2 Y f = F
1

i=1
where £ is the minimal covering fraction of row i:
i
0
f,=MIN {r | 0< j<n, a = 1}.
1 3 ij
(Proof) Define the fcllowing new problean.
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(10) NMIND 3 r ¥

jk
j=1 k=1 )
n n
S.7T 21 i=1,...,1
> 953k Yk resey
j=1 k=1
y_k binary 3 = 1,eee,n, k = 1,...,n
where a. . if j = k .
oy 13 ‘
ijk .
0 otherwise. -

Tc anry feasible sclution x of the SCP, there corresponds

a solution of problem (10) in such a way that the ol jective

function values are equal. Specifically, for each x =1, o
J A
- -4

y_k = 1 for all k. On the other hand the minimua of prchiern
j ]
e (10) is obviously F. This proves the statement (9) of the h:;
o lemma. f:f
f;' It is easy to extend the Kovac bound to problems with . ]
general right-hand-sides ty using .
m o
F = L. £, )
X b o
i=1 P

E. CCOMPUTATIONAL RESULTS

{" Computational results for the lower bounds Adescribel
above are reported here for all the test problems (See Takle -
4. "DNR* indicates 4id not run.). It is unot clear that the

tightest lower bound for the complete probler will perforn

. .
POV A EPUY U U S GEPVEDL R )

the best in the kranch and bound enumeration, but some posi-
tive correlation is to be expected. The computational speed

- of the bound is also a consideration in branch ané Lound anid

S .
R
A B

some increase in speed may be traded for a loss ir accuracy.

)
.

ii' Thus, the results given here are a guide to which bound will
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te most e€ffective in the branch and bound algorithm tut only
testing with that algorithm <can determine true effective-
ness. The dual LP relaxation method (DLPFLB) appears to be
the best in the problems Dus, Steinerl1l, Tiger and American.
Actually, both DLPRLR and Hey's method do outstandingyly well
on 3Bus. Kovac's heuristic aprears to be superior to the
cther bounds in Truck, Steinrla, Steiner2 and Steinr2a. FTor
Steinrla and Steinr2a, the bounds are tight indicating that
if good heuristic solutions can be obtained, the tranch arni

bound algorithm should terminate very gjuickly.
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Problem
American
Bus
Steiner?
Steinrila
Steiner?2
Steinr2a
Tiger

Truck

OPT
va
1.726 1
4.696 0
18.0 8
9.0 9
30.0 14
15.0 15
52.751 35
? 206

TABLE &
Computationmal Results of

Kovac's Par

.7 0.00 4.0
.0 0.00 2.9
.36 0.00 30.29
.5 0.31 149.1

Lower Bounds

Tim2
0.10
0.00
0.00
0.00
0.00
0.00
0.03

0.12

Hey's
Value Tige
1.378 0.12
4. 635 0.00
9.0 0.00
2.0 0.00
14.0 0.00
2.0 0.00
50. 1 0.03
DNR -
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All of the computational results reported in this B

secticn are for SCPs. The algorithms performed veryv.well on
some of the problems tut not on the others. At first, small
: test problers were wused to check the correctness of the

algorithms. All algcrithms worked well on these small proh-
i; iems. The algorithms were then tested on the eight fprcilems
descrited irn chapter 1. To soive these problems, we Lave
used five methods to see which method is more effective than

tihe others. The descriptions of tae methods follow.

Method 1: Lower tcund: Dual L? relaxation.
Upper bound: Addition heuristic.
Separation: jo= argmin ¢ /L among all
' J 3

x = 1 in current solutior.
]

Branching: x = 1 first. .
J S
0 T
Method 2: Lower Fkcund: Dual LP relaxation.
Upper tound: Addition heuristic.

Separation: jo = argmax ¢ /h_  among all
J 3]

j not irn current solution.
Branching: x = 0 first.
3

Method 3: Lower bcund: Dual LP relaxation.
Upper tcund: Deletion heuristic.

Separation: arqmin ¢ _/h  among all variables
J 3]
j rot in current solution.

Branchirg: x_ = 1 first.
3
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Method #: Lower tound: Dual LP relaxation.
Upper itound: Deletion heuristic.
Separation: argmax ¢ /h among all variabies
J 3

j not in current soiution.

Branching: x, = 0 first.
J

Methcd 5: Lower tound: Kovac's
Upper tocund: Addition heuristic.
Separation: argmin ¢ /h_ among all variakles
J 3

j not in current solution.

Branching: x = 1 first.
J
As illustrated in Table 5, three problems were not
solved optimally. We denote the actual percentage with

respect to the optimal value as a "%0PT" and the provakly
optimal fpercentage as "%POPT." %POPT denotes the arount by
which were able to prcve that the best solution found variel
from the oprtimal solution without knowirg the optimal solu-
tion. This value 1is obtained by changing the CLBND > PEST
tests in the kranch and tound alyorithm to

CLBND 2 BEST-EPS where EPS is an allowable amount of error.
If the trarch and bound algorithm then halts, it fcllows
that the incumbent sclution is within 100%<(BEST+EPS) /REST
of the optimal soluticn.
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ﬁ_ TABLE 5

b Computational Results Compared with Previous Results

b

ﬁ. New Results Previous Results

. Prchlems oPT ZOPT  %POPT Method Time %OPT ILPtime

. American 1.726  110.0  110.7 1 0.09 100 26.53

Eus 4.696 100 100 2 0.54 100 1.02

; Steiner1 18.0 100 109 4 30.98 100 25.13

g Steiner1A 9.0 100 100 5 0.01 100 0.91

B Steiner2  30.0 100 100 4 96 .74 100 527.08

w Steiner2a 15.0 100 100 5 13.71 100 13.14

) Tiger 52.751 101.5 105.0 1 1.0 100 1.71

[ Truck ? ? 140.0 5 25.74 ? ? <
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All these problems except Truck are typical set coverinyg

!* problems which Lave right-hand-side values egual to 1. The - —
L Truck froklem has the general right-hand-side form shown irn
j{ Equation (2). The ccmputational results are summarized in

o Table 5. These results are the best of the various solution A
- methods tried. "Previous Results" indicate either ‘those e
times reported by Bausch or the times we recorded using the

methods cf Bausch. Funning times on Steiner2 are £for 109000

nodes oxnly; optimality was not proven in either our or

Bausch's computation. Table 6 shows the comparisor between -

the different soluticp techniques on each of the problems.
The problems marked with * were not solved optimally within
1 minute of CPU time.
r . T—
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TABLE 6
Comparison of VYarious Solution Methods

. Prcblem OPT Method 1 Method 2 Method 3 Method 4 Aa
g YValue Iime Value Time Value Time Value Time .&
3 American* 1.726 1.89 1.17 1.89 11.11 1.89  12.10 1.89  15.42 N
g Eus 4.696 4.696 0.82  4.696 0.54  4.696 16.61  14.696  4.24 e
3 Steiner1 18.0 18.0  31.81 18.0 36.72 18.0  31.51 138.0  30.92 o
s Steinrla 9.0 9.0 30.21 9.0  32.93 9.0  33.83 3.0  39.22 v
w Steiner2 30.0 30.0 111.69 30.0 100.38 30.0 195.11 30.0  96.74 Nw
3 Steinr2a 15.0 15.0 154.53  15.0 144.58 15.0 126.71 15.0 216.84 w
i Tiger*  52.75 53.54  40.35 54.48 1.92 53.84 41.28 58.17  17.6 o

g Truck* ? 354.5 19.91 350.7 15.61 389.6 56.42 389.1 52.47 R
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B. EXAMNPLE

Gne cf the results of the +tests was that the deletion
heuristic usuvally produces better feasible solutions tharn
the addition heuristic both initially and further down the
tree. This leads to the enumeration of fewer nodes with the
deletion heuristic. Unfortunately, it does not 1lead to
faster times because the deletion Leuristic is so wmuch
slower than the addition heuristic. For exaaple, using
method 4 which includes the deletion heuristic, it 1is
possitle to solve Bus after exploring only 15 nodes. Using
method 1 with tke addition heuristic requires develogirg 53
nodes to solve Bus. Cn the other hand, the method usinj thLe
deletion heuristic requires 4.24 seconds to solve the
problem while the method using the addition henristic
requires only 0.82 seconds to solve the problen.

In order to illustrate tke actual behavior of the algo-
rithm, the enumeration for Bus is shown below for two
different methods, method 2 and method 4. For these two
methods, the enumeration trees are sufficiently small to be
shown. The entire trees generated for Bus are displayed irn
FPigure 5.1 and Figure 5.2. Note that for both methcds, the
optimal =solution is found at the second node of the
enumeration tree. Most of the running time of the aljorithnm
is spent ©[proving optimality after the optimal solutiocn is
fourd.
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Figure 5.1 Method 2 on Bus.
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Figure 5.2 Method 4 on Bus.
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VI. CONCIUSIORS AND RECOMHMENDATIONS

The tranch and bound enumeration method using heuristi-
cally obtaired wupper and lower bounds works well c¢n scame
rroblems and poorly cn others. Solution times are better
than the times using the methods described Lty Bausch on
certain problems but other problems could not be solvel to
optimality in a reasonable amount of time. The algorithim is
largyely dependent upcn the quality of bounds obtained, and
in certain instarces these bounds are not very good.

The greedy additior heuristic used here does not perforn
as well as might be hcped and the deletion heuristic, which
performs better, 1is too slow to use in most cases. Otther
addition heuristics should probably be tested which select
that «column j minimizing some function

g(c . ,h)), where g(c ,h ) is some function other than c /h
J J J J 2

such as ¢ /log(h ). In fact, Vasko and Williams [Ref. 51]
] J

have had some success selecting randomly from a rnumber of
such functions, albeit on randomly generated prolblems. Tley
also wutilize a 1-oft heuristic. Fature research should
examine the use of this and other exchange heuristics,
particularly in conjunction with the addition Leuristic
since it may be possikle to significantly improve upon the
solutions obtained without sacrificing auck computatioral
speed.

The lower bound from the dual LP works quite well on
some fprotlems and pccrly on cothers, notably Truck. of
course, the LP-based bound did not work well on Steinerl! or
Steiner2 since those problems were concocted so as to have

very poor LE relaxaticns. The high speed of computation for

49
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this lower round does allow rapid investigation of a large
number of nodes, however. In the Steiner problems, we
expected that brancn and bound enumeration using Xovac's
iower bourd might work better than the other lower bcunds
since the value of the initial lower bounds were stronger
than the other bounds as shown in Table 4. Unfortunately,
the qguality of tke bound does not improve rapidly enough as
the enumeration groceeds. Additional research is needel to
generate tetter heuristic solution sets and lower bcunis.
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